
A Modeling Interface to Non-Linear Programming Solvers

An instance: xMPS, the extended MPS format

Bjarni V. Halldórsson�

bjarni@cmu.edu

Erlendur S. Thorsteinssony

esth@cmu.edu

Bjarni Kristjánssonz

bjarni@maximal-usa.com

9th February 2000

Abstract

We present a Modeler-Optimizer Interface (MOI) for general closed form Non-Linear Programs
(NLP), which can be used to to transfer NLPs in a clear and simple manner between optimization
components in a distributed environment. We demonstrate how this interface allows �rst order
derivative information to be easily calculated on the optimizer's side, using automatic di�erentia-
tion, hence removing the bottleneck of communicating derivative information between the modeler
and the optimizer.

We also show how this interface directly corresponds to a �le format for NLPs, the extended
MPS format (xMPS). This format directly extends the standard MPS �le format for linear and
mixed integer programs to include NLPs and permits a standardized way of transferring benchmark
problems. The format spares the modeler the tedious task of calculating derivative information
with minimal extra work required by the optimizer and thus increases e�ciency. This work was
originally done at Maximal Software in order to connect the MPL modeling language [15] with
non-linear solvers.

1 Introduction

In this paper we present a Modeler-Optimizer Interface (MOI) for general closed form Non-Linear
Programs (NLP), which can be used to to transfer NLPs in a clear and simple manner between
optimization components in a distributed environment.

Let us start by looking at how most general purpose NLP optimizers work and what they demand
from their environment. Most (if not all) follow this iterative framework:

Initialize a set of current solutions X .
While the optimal solution has not been found:

Obtain function/derivative values at points stemming from X .
Update X .

Furthermore, many NLP optimizers use higher order derivatives when updating the current solution,
in particular second order derivatives.

Hence, general purpose NLP optimizers assume that function values, derivative values and possibly
higher order derivative values can be provided by an external source at any given point in the domain.
As an alternative, only function values can be provided to the optimizer, in which case it has to
approximate the derivatives numerically.

�Department of Mathematical Sciences; Carnegie Mellon University; Pittsburgh, PA 15213; U.S.A.
yGraduate School of Industrial Administration; Carnegie Mellon University; Pittsburgh, PA 15213; U.S.A.
zMaximal Software, Inc.; 2111 Wilson Blvd., Ste. 700; Arlington, VA 22201; U.S.A.

Neither of these two options are appealing. The �rst one requires that functions that evaluate the
partial derivatives be explicitely written. This can be a complex task, prone to errors, time consuming
and is usually intractable for large problems. The second option has built-in numerical errors which
can lead to numerical instability in the optimization process.

More prohibitive, however, is the fact that both options are computationally expensive. The �rst
option requires that the function value and the n partial derivative values (n being the number of
variables) be calculated and passed separately from the modeler to the optimizer. The second option
requires a constant number of function evaluations for each partial derivative. This means that O(n)
function evaluations would be required to approximate all the partial derivatives. It is, however, well
known that using the techniques of automatic di�erentiation only O(1) evaluations are needed to
calculate all the necessary values [9]. The interface we propose takes advantage of that.

Both of the approaches described above also cause much tra�c between the modeler and the
optimizer. They essentially require all optimization components to reside on the same computer, or
on computers connected by a high speed network and even then the amount of tra�c may cause
congestion and delays. In many applications, however, we would like the modeler to reside on a
di�erent computer than the optimizer, where the modeler would typically reside on a user friendly
machine and the optimizer on a computationally powerful machine. Also, we would like to be able to
distribute the optimizer between di�erent computers. Hence, each component of the optimizer must be
able to have all the necessary calculations done locally. Our interface minimizes tra�c by sending only
the necessary information from the modeler to the optimizer at the start of the optimization process
and then the function evaluation and di�erentiation is performed on the optimizer's side.

Notice that none of this is a problem if we are only considering Linear Programs (LP) or Mixed
Integer Programs (MIP). Then it is quite simple to transfer the necessary information around, as the
coe�cient tableau (matrix) provides all the details. Using the tableau it is quite simple to calculate the
function value and all derivative values at a given point. This has become the de facto standard way
of exchanging information on LPs/MIPs, both between di�erent optimization components in software
and as a �le format [5, 10, 11, 12]. We argue that it is also necessary to have a standardized interface
for NLPs between di�erent optimization components. The Modeler-Optimizer Interface (MOI) we
propose has four main advantages:

� It provides a clear separation between the modeler and the optimizer (or di�erent optimization
components) with minimal communication.

� It is very simple, both from users' and software developers' perspectives, enabling a short learning
curve.

� The interface allows function and derivative information to be easily calculated (using automatic
or implicit di�erentiation), thus sparing the modeler the tedious task of calculating derivative
information with minimal extra work required by the optimizer.

� As a special instance, it has a direct correspondence to a �le format for NLPs, the extended MPS
format (xMPS) [19]. This format directly extends the standard MPS �le format for linear and
mixed integer programs to include NLPs and permits a standardized way of transferring bench-
mark problems and maintaining testbeds, thus facilitating communication between researchers
in this �eld and comparison of di�erent NLP optimizers.

2 Background

2.1 Expression trees and stack machines

The underlying data structure of MOI relies heavily on the representation of closed form functions as
expression trees, or equivalently, as stack machines. There+fore we include a brief introduction below,
but detailed discussion on these topics can be found, e.g., in [1, 14, 18].

2

For illustration let us consider the following optimization problem:

min sin(x1) + x1x2 + 2x2 (obj)
s.t. x1 + x2 � 4; (g1)

4 ln(x1x2) + x1 � 1: (g2)
(1)

We are only going to be concerned with the non-linear part of each expression, as the linear part can
be easily communicated between the modeler and optimizer in the form of a matrix, as in the case
of LP/MIP. This allows for quicker derivative evaluation of the linear part as the derivatives of linear
functions are trivial to evaluate. The linear part can, however, also be transported along with the
non-linear part.

Looking at the linear part of (1) we notice that x1 appears linearly in (g1) and (g2), and x2 appears
linearly in (obj) and (g1). In addition, (obj) and (g2) have some non-linear elements to them. Rewriting
and regrouping we can thus state (1) in the following manner, noting the matrices that can be sent
directly to the optimizer (in square brackets):

min
n

sin(x1) + x1x2
o

+
h
0 2

ih x1
x2

i
s.t.

n
0

4 ln(x1x2)

o
+

h
1 1
1 0

ih
x1
x2

i �
�

h
4
1

i

Using expression trees we can describe the non-linear part of (obj) and (g2) in a simple manner.
We �rst convert each (non-linear) expression into post-�x notation (Polish notation) [1, 14].

In-�x notation Post-�x notation
sin(x1) + x1 � x2 x1 sin x1 x2 �+
4 ln(x1 � x2) x1 x2 � ln 4�

We then construct an expression tree by scanning the post-�x expression from left to right and

� for every coe�cient/variable, create a leaf node containing the coe�cient/variable,

� for every n-ary operator (e.g., elementary arithmetic operators and logarithmic and trigonometric
functions, see App. A for full details), join the n most previous nodes that do not have a parent
yet by an inner node containing the operator.

?>=<89:;+

?>=<89:;sin

���� ?>=<89:;�
????

?>=<89:;x1 ?>=<89:;x1

���� ?>=<89:;x2

????

?>=<89:;�

?>=<89:;4

����� ?>=<89:;ln

?????

?>=<89:;�

?>=<89:;x1

����� ?>=<89:;x2

?????

Non-linear part of (obj) Non-linear part of (g2)

An expression tree is evaluated bottom-up, i.e., in order to evaluate a node we �rst evaluate its children
recursively and then use their values to evaluate the node itself. This can be accomplished by traversing
the tree in a depth-�rst manner.

The post-�x form also directly corresponds to a stack machine. We can evaluate a post-�x expres-
sion directly as a stack machine by scanning it from left to right and

� for every coe�cient/variable, push the coe�cient/variable onto the stack.

3

� for every n-ary operator, pop n elements o� the stack, apply the operator to them and push the
result onto the stack.

We get the following for the non-linear part of (obj):

Input: x1 sin x1 x2 � +
"& "& " & " & " & " &

x2
x1 x1 x1 � x2

Stack: ? x1 sin(x1) sin(x1) sin(x1) sin(x1) sin(x1) + x1 � x2

The input line shows the input element being processed. Below each element is the stack as it is before
processing the element, and below-right is the stack after processing the element.

As can be seen from this example, evaluating the post-�x expression as a stack machine is very
simple. Also, parsing expressions written in mathematical notation, such as (1), separating the linear
and non-linear parts and transforming the non-linear parts into a post-�x expression is quite simple
and well known [1, 14].

The Modeler-Optimizer Interface (MOI) we propose will be based on an extended stack machine,
where elements are never popped o� the stack, thus allowing expressions to refer to all intermediate
values previously calculated.

2.2 Automatic di�erentiation

One of the greatest bene�t of MOI is that it allows for direct application of automatic di�erentiation
to the underlying data structure. By using automatic di�erentiation it is shown in [9] that by taking
care in storing quantities that are common to the function and the partial derivatives, the cost of
evaluating all the partial derivatives is no more than �ve times the cost of evaluating the function.

Automatic di�erentiation is an application of the chain rule of calculus. Each node n in the
expression tree, which contains an operator, expresses the function fn = operator(fc1 ; : : : ; fck), where
c1; : : : ; ck are the children of the node n. The chain rule then implies that following holds for the
partial derivative of fn with respect to xi:

@fn
@xi

=
@fn
@fc1

@fc1
@xi

+ � � �+ @fn
@fck

@fck
@xi

: (2)

Note that the evaluation of @fn=@fci is only the evaluation of a derivative of an operator with respect
to its its operands and is a simple expression dependant only on the value of its operands. For example,
if the operator is addition then fn = +(fc1 ; fc2) = fc1 + fc2 and

@fn
@xi

= 1
@fc1
@xi

+ 1
@fc2
@xi

: (3)

If the operator is multiplication then fn = �(fc1 ; fc2) = fc1 � fc2 and

@fn
@xi

= fc2
@fc1
@xi

+ fc1
@fc2
@xi

: (4)

Let N be the set of all leaf nodes and let Plj be the set of all edges (np; nc), from a parent node to a
child node, on the the path from the root node to the leaf node lj 2 N . Let fr denote the function the
expression tree represents, i.e., the root node. If we expand the partial derivatives using (2) recursively
and then multiply out, we get

@fr
@xi

=
X
lj2N

0
@ Y

(np;nc)2Plj

@fnp
@fnc

1
A @flj

@xi
; (5)

4

where the sum is taken over the leaf nodes. For every leaf l in the expression tree, which contains a
variable xj ,

@fl
@xi

=

(
1 if i = j;

0 otherwise;
(6)

and for every leaf l in the expression tree, which contains a constant,

@fl
@xi

= 0: (7)

By (6)�(7) the term @flj=@xi in (5) will always be zero unless the node lj contains the variable xi and
will then be one. One consequence of this is that the derivative with respect to xi of a subtree that
does not contain xi will be identically zero.

Notice that the parenthesized expressions in each term of the sum (5) can be written @fr=@flj if
we de�ne

@fr
@fn

=
Y

(np;nc)2Pn

@fnp
@fnc

;

where Pn is the set of edges from the root node to node n. Thus @fr=@flj is independent of the variable
xi, with respect to which we want to di�erentiate. The variables only occur in the leaf nodes so if we
know all the subtree function values we can evaluate all partial derivatives in an incremental fashion
by descending the tree from the root using these updating rules:

� At an operator node, n, we store the partial derivative of that node with respect to the function,
i.e., @fr=@fn.

� At a leaf node, l, containing a variable, xi, we increment the partial derivative @fr=@xi by
@fr=@fl, the derivative of the leaf node with respect to the function.

Notice that in both of these cases, if p is the parent of the current node n then

@fr
@fn

=
@fr
@fp

@fp
@fn

;

where @fr=@fp has been previously evaluated and @fp=@fn is a simple expression that relies only on
the values of the children of p, as in the examples (3)�(4). See App. A for full details on what operators
are supported and what their derivatives are with respect to their operands.

3 Modeler-Optimizer Interface (MOI)

As mentioned in Sec. 1, non-linear optimizers generally assume that the modeler stores the model.
The optimizer will then ask the modeler for function values and possibly derivative values at any point

Evaluator

Modeler
Initial and solution values

Function and derivative values

Optimizer

Figure 1: Current communication setup.

5

Function and derivative values

Modeler

MOI

Model, initial and solution values
Optimizer Evaluator

Figure 2: Proposed communication setup using MOI.

in the domain. This is prohibitive to a more widespread use of non-linear solvers since it does not
provide for a clear separation and a communication interface between the modeler and the optimizer.

The Modeler-Optimizer Interface (MOI), see Fig. 2, transports the model from the modeler to
the optimizer, which can then communicate parts of the model to a function and derivative evaluator
as needed. Note that the evaluator need not be a part of either the modeler nor the optimizer.
As there generally is a high level of communication between the evaluator and the optimizer, it is
important that a copy of the evaluator reside close to the optimizer. In particular if the optimizer
has distributed components that each require function and derivative evaluations, it is important a
copy of the evaluator reside close to each of them. In contrast notice that the modeler generally does
not require function and derivative evaluations and hence the evaluator need not reside close to the
modeler.

3.1 The MOI callable library format

The Modeler-Optimizer Interface is a speci�c implementation of a stack machine as a format for trans-
porting the non-linear part of an optimization problem between di�erent optimization components.

In each line of the stack machine we store an operator and its left and right operand. The operands
can be of four types: A variable, in which case we store the variable number; a constant, in which case
we store the value of the constant; a previous line, in which case we store its index; or non-existent if
the operand is monomial. A single stack machine (with l lines) for a non-linear expression can thus be
transported using the following seven arrays; Oper, ArgL, ArgR, IndexL, IndexR, ValueL, ValueR:

Oper A vector of l integers, (Oper1;Oper2; : : : ;Operk). Operi contains the unique code for the
operator in line i (see App. A).

ArgL, ArgR Vectors of l characters, (Arg[LR]1;Arg[LR]2; : : : ;Arg[LR]l). Contain the argument
type: X indicates a variable, C indicates a constant and V indicates a previous line.

IndexL, IndexR Vectors of l integers, (Index[LR]1; Index[LR]2; : : : ; Index[LR]l). If Arg[LR]i indi-
cates a variable then Index[LR]i contains the variable number and if Arg[LR]i indicates a previous
line then Index[LR]i contains the line number.

ValueL, ValueR Vectors of l �oating point numbers, (Value[LR]1;Value[LR]2; : : : ;Value[LR]l). If
Arg[LR]i indicates a constant then Value[LR]i is that constant.

We can then describe the objective function in example (1) in the following way:

Line Oper ArgL ArgR IndexL IndexR ValueL ValueR Expression
1 OpSIN X 1 v1 : sinx1
2 OpMUL X X 1 2 v2 : x1x2
3 OpADD V V 1 2 v3 : v1 + v2

6

3.1.1 Transporting multiple constraints

To transport all the non-linear constraints as a whole we line up all the stack machines one after the
other. To do this we add the eighth array:

NlBegin A vector of integers of lengthm+2, wherem is the total number of constraints (not including
the objective function). All lines from the stack machine corresponding to the objective function
are stored in lines NlBegin0 to NlBegin1 � 1. All lines from the stack machine corresponding to
the ith constraint are stored in NlBegini to NlBegini+1 � 1. If constraint i does not contain any
non-linear elements then NlBegini and NlBegini+1 should be equal. The last entry in NlBegin
points to the position after the last stack machine.

Example (1) is then stored in the MOI data structure in the following way:

NlBegin Line Operator ArgL ArgR IndexL IndexR ValueL ValueR Expression
0 1 OpSIN X 1 v1 : sinx1
3 2 OpMUL X X 1 2 v2 : x1x2
3 3 OpADD V V 1 2 v3 : v1 + v2
6 1 OpMUL X X 1 2 v1 : x1x2

2 OpLOG V 1 v2 : ln v1
3 OpMUL V C 2 4.0 v3 : 4:0v2

3.1.2 Interface to non-linear solvers

Non-linear solvers can now be interfaced in a similar fashion to LP/MIP solvers, with the addition of
an extra function call where the non-linear part is transported from the modeler to the optimizer.

int LoadNonLinear(void* EnvironPtr, int NumVars, int NumCons

int NumStacks, int* NlBegin, int* Oper, char* ArgL, char* ArgR,

int* IndexL, int* IndexR, double* ValueL, double* ValueR)

Figure 3: C interface to a non-linear solver.

3.2 Automatic derivative algorithm for MOI

In the previous section we saw that we can evaluate the partial derivatives of a given node in our
expression tree if we know the partial derivative of the node's parent, the value of the node and the
value of the node's siblings.

We will now demonstrate how we can evaluate all partial derivatives. The algorithm described is
known as the reverse mode of automatic di�erentiation [16] and calculates all the partial derivatives
in two sweeps over the MOI data structure. First we sweep forward over the MOI data structure and
calculate and store the value of all the nodes (the value of the partial expression in the expression tree
rooted at the given node). This corresponds to ascending the corresponding expression tree. We then
sweep backward over the MOI data structure to calculate all the partial derivatives, which corresponds
to descending the corresponding expression tree.

We store the value of node ni in NodeValuei and the partial derivative of node ni with respect to
the root, @fr=@fni , in (@V)i. The partial derivative of fr with respect to xi is stored in (@x)i. The
partial derivative of the operator Oper with respect to its child C, evaluated at VL; VR, is denoted
@Oper=@C(VL; VR). Evaluate(Oper,VL, VR) is the evaluation of Oper with arguments VL and VR and
StackLength is the total number of lines in the stack machine.

7

Algorithm CalculateAllFirstOrderPartialDerivatives
// First calculate the value of all nodes
For k 1 to StackLength

[VL, VR] RetrieveChildrenValues(k)
NodeValuek Evaluate(Operk,VL, VR)

// Then calculate the derivative values
Initialize all (@x)i to 0, and (@V)StackLength to 1
For k StackLength to 1

[VL, VR] RetrieveChildrenValues(k)
For C {L, R}

If ArgCk is X
(@x)IndexCk

 (@x)IndexCk
+ (@V)k � @Operk=@C(VL; VR)

Else If ArgCk is V
(@V)IndexCk

 (@V)k � @Operk=@C(VL; VR)

Function [VL, VR] RetrieveChildrenValues(k)
For C {L,R}

If ArgCk is C Then VC ValueCk

Else If ArgCk is X Then VC xIndexCk

Else VC NodeValueIndexCk

3.2.1 An Example

Looking back at example (1), let us evaluate the partial derivatives of the non-linear part of the
objective function at the point (�=2; 2e=�):

Initialize (@x)i to 0.0 and initialize the derivative value of the root node with respect to the function,
(@V)3 to 1.0.

Forward sweep to evaluate NodeValue. We �nd that NodeValue1 = 1:0, NodeValue2 = 1:0 and
NodeValue3 = 2:0. We note that NodeValue3 is the function value fr.

Backward sweep to evaluate the partial derivatives:

Line 3
Oper ArgL ArgR IndexL IndexR ValueL ValueR NodeValue (@V)

OpADD V V 1 2 2.0 1.0

Evaluate the derivative values of lines 1 and 2, (@V)1 1:0� 1:0, (@V)2 1:0� 1:0.

Line 2
Oper ArgL ArgR IndexL IndexR ValueL ValueR NodeValue (@V)

OpMUL X X 1 2 1.0 1.0

Increment (@x)1 by 1:0� 2e=�, and increment (@x)2 by 1:0� �=2.

Line 1
Oper ArgL ArgR IndexL IndexR ValueL ValueR NodeValue (@V)

OpSIN X 1 1.0 1.0

Increment (@x)1 by 1:0� cos(�=2).

We then have @fr=@x1 = 2e=�+cos(�=2) = 2e=� and @fr=@x2 = �=2 at the speci�ed point (�=2; 2e=�).

8

4 The extended MPS (xMPS) �le format

As mentioned in Sec. 1, the main criteria for a �le format for non-linear programs is that it (a) be simple
to use, (b) be compatible with some popular format used for linear programs, (c) extend in a simple
way to memory representation, and (d) allow for automatic (analytical) di�erentiation. This would
ensure, e.g., that (a) benchmarks problems could be easily transferred between systems, (b) existing
LP/MIP readers would only have to be slightly modi�ed to read the new NLP format, (c) problems
could be transferred in an e�cient manner from the modeler to the optimizer, and (d) optimizers could
easily be provided with exact derivatives at every point in the solution space without the derivative
functions being explicitly included in the model.

The MPS �le format is a widely accepted standard for expressing LP/MIP problems, recognized
by many LP/MIP solvers and modeling languages. In this section we are going to describe a special
instance of MOI, a �le format for non-linear programs, called xMPS, which extends MPS. More
information on MPS can be found in [11] and how di�erent software packages implement MPS in [5,
10, 12]. We describe below only our additions to MPS, a full description of xMPS is given in xMPS,
the Extended MPS Format for Non-Linear Programs [19].

4.1 The xMPS �le format

The MOI interface is implemented in the the xMPS �le format by adding two new indicator records
to the relaxed MPS format [19]:

NONLINEAR indicator record. The corresponding data records contain the non-linear part of a
constraint. A complete constraint is the sum of the linear part speci�ed by the COLUMNS
section and the non-linear part speci�ed by this section. This indicator record should appear
directly after the COLUMNS section.

INITIAL indicator record. The corresponding data records are the initial (non-zero) values for each
variable. This indicator record should appear directly after the BOUNDS section.

We describe the data records in more detail below.

NONLINEAR. The non-linear part of each constraint is represented by a list of lines where each
line is of the type:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Constraint name Line name Operator Argument 1 Argument 2

For each constraint the lines form a stack machine which expresses the non-linear part in the same
manner as in the MOI interface. The lines for a particular constraint should appear contiguously, i.e.,
the NONLINEAR section is divided into blocks based on the constraint names. The line names within
each block should be distinct and di�erent from the variable and constraint names. The last line name
in each block should be RES, indicating the end, and therefore the result, of the expression.

The operator is in the set of known keywords for operators, see App. A orwww.maximal-usa.com/xmps
for an updated version.

The arguments are either constants, variable names drawn from the COLUMN section or line names
of lines above the current line in the current block.

Variables that are only referred to in nonlinear equations (i.e., do not occur linearly in any con-
straint) still need to be declared in the COLUMNS section.

INITIAL. Data records in the INITIAL section specify the values of the initial solution values. The
data records have the following form:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

Init. name 1st var. name 1st var. value 2nd var. name 2nd var. value

9

where �elds 5 and 6 are optional. If they are used, they contain another variable/value pair, as in
�elds 3 and 4, respectively. Init. name is the name of the initialization vector.

4.1.1 An example

To illustrate the xMPS format let us consider example (1) from section 2.1 again, starting the opti-
mization at x0 = (x1; x2) = (1; 1). Examining (1) we notice that x1 appears linearly in (g1) and (g2),
and x2 appears linearly in (obj) and (g1). In addition, (obj) and (g2) have some non-linear elements
to them. This problem would be represented in xMPS as follows:

NAME demo.xmps
OBJSENSE
MIN
ROWS
N obj
L g1
G g2

COLUMNS
x1 g1 1 g2 1
x2 obj 2 g1 1

NONLINEAR
obj v1 sin x1
obj v2 mult x1 x2
obj RES add v1 v2
g2 v1 mult x1 x2
g2 v2 ln v1
g2 RES mult 4 v2

RHS
rhs g1 4 g2 1

INITIAL
init x1 1 x2 1

ENDATA

The ROWS section starts by declaring the constraints, (obj), (g1) and (g2) and stating their sense.
The COLUMNS section then declares the variables x1 and x2 and the linear part of each constraint.
We note, e.g., that according to this description the linear part of constraint (obj), the objective
function, is 2x2.

The NONLINEAR section then describes the non-linear part of each constraint. For example, the
description of (obj) would be parsed in the following manner: We would �rst take sin(x1) and label it
v1. We then take x1 � x2 and label it v2. According to the last line in the (obj) subsection, the result
should be v1 + v2, which is sin(x1) + x1x2.

As mentioned before, each constraint of the problem is then the sum of the linear and non-linear
parts. Therefore, constraint (obj) is sin(x1) + x1x2 + 2x2.

5 Related work

5.1 Automatic di�erentiation

The automatic di�erentiation algorithm presented in Sec. 3.2 is an example of reverse mode automatic
di�erentiation. Extensive research has been done on automatic di�erentiation (see, e.g., [9]), both in
trying to take advantage of repetitive structures and also in evaluating derivatives of more complex
functions than the closed form functions that we have limited ourselves to. Advanced optimization
packages may be able to bene�t from this research.

10

The example we gave of an automatic di�erentiation is intended as a simple example of how
automatic di�erentiation can be used in conjunction with optimization. This is with a minimal imple-
mentation e�ort and can in fact be implemented in less than 100 lines of code. Even so, this derivative
evaluation method is order of number of variables faster than evaluating derivatives using the �nite
di�erence methods that are currently employed in many optimization packages.

We believe that this method has several bene�ts over having the modeler link automatic di�eren-
tiation packages to his code. As the automatic di�erentiation code is directly linked with the solver
we can ensure that the communication cost between the derivative evaluation code and the solver is
minimized. We also believe that the e�ort on part of the modeler of writing the model in the MOI
format is considerably less than making the function evaluation routines amenable to some of the
common automatic derivative codes such as ADIC [3] and ADOL-C [8].

5.2 Explicit di�erentiation

The MOI data structure, whether in �le format or memory representation, can be easily converted
into expression trees. Expression trees that contain the derivatives can be explicitly constructed from
them. This method for calculating derivatives is called explicit di�erentiation and is an alternate to the
proposed method of automatic di�erentiation. Deriving e�cient algorithms for explicit di�erentiation
may be a worthwhile line of research.

5.3 Interfaces to modeling languages

The MOI format was originally implemented as an interface between the MPL modeling language and
non-linear solvers. Some other commonly used modeling languages such as AMPL [7] and GAMS [6]
also have interfaces to non-linear programming solvers. These implementations have some excellent
features. For instance, AMPL appears to do a good work of trying to extract features that are
important for e�cient evaluation of derivatives. Their main drawbacks are however:

� The communication language is proprietary. We note that the adoption of the MOI interface
is not dependant on the adoption of any speci�c modeling language, such as MPL, AMPL or
GAMS.

� Some of the communications is done via �le systems, which is slower than through memory.

� A clear separation between the modeler and the optimizer is not provided as the modeler is
responsible for evaluating derivatives, providing for bottlenecks in communications. The opti-
mizer also relies on the modeling language for implementing e�cient algorithms to exploit the
optimizers structures. This division of labor is generally unreasonable.

� The optimizer cannot �see� the model and does not have a clear way of extracting attributes
from it that can enable it to reduce the model. An example of this would be if the optimizer
would like to branch on integer variables. These branchings may signi�cantly reduce the model
and the optimizer will want to exploit that fact.

5.4 Lancelot SIF format

The Lancelot SIF format [4] is a �le format for transporting non-linear programs. It is, however, not in
widespread use. We believe this is mainly because the format is too complicated and tries too heavily
to exploit some speci�c problem structures. We believe that such structure exploitation should be
passed independently of the problem itself.

11

6 Conclusion

We have described a general interface (MOI) for NLP solvers that provides a separation between the
modeler and the solver. It directly extends common interfaces to LP solvers and allows the solver to
take advantage of automatic di�erentiation techniques.

MOI also gives the optimizer a complete description of the model as a series of expressions. This
allows the optimizer to have a global viewpoint of the model instead of the traditional local viewpoint
of only being able to calculate function and derivative values at any given point. This global viewpoint
is essential if the optimizer wants to automatically detect how to best distribute the model between
optimization components. Furthermore it gives rise to new and interesting research directions in
non-linear programming such as operator and expression speci�c optimization.

As a particular application we have provided an extension (xMPS) for non-linear programming to
the widely used linear and mixed integer programming �le format MPS.

Both MOI and xMPS have been implemented for the commercial modeling system MPL, which is
available from Maximal Software at www.maximal-usa.com, using the NLP solvers CONOPT [2] and
GRG2/LSGRG2 [17].

7 Acknowledgments

The authors would like to thank Arne Drud for providing the initial draft of the non-linear �le format,
and Jochen Könemann for making valuable comments when proofreading this paper.

References

[1] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques and Tools.
Addison�Wesley Publishing Company, 1986.

[2] Arki Consulting and Development. CONOPT, reference manual, 1998.

[3] Christian Bischof, Lucas Roh, and Andrew Mauer. ADIC�an extensible automatic di�erentiation
tool for ANSI-C. Technical report, Argonne National Laborotory, 1996.

[4] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. The LANCELOT Speci�cation
File. www.numerical.rl.ac.uk/lancelot/spec/spec.html.

[5] Dash Optimization, Inc. XPRESS�MP: User Manuals, 1999. www.dashopt.com.

[6] GAMS Development Corpartation. GAMS, A Users Guide. www.gams.com.

[7] David M. Gay. Hooking your solver to AMPL. Technical report, Bell Laboratories, 1997.
www.ampl.com.

[8] A. Griewank, D. Juedes, H. Mitev, J. Utke, O. Vogel, and A. Walther. ADOL-C: A package for
the automatic di�erentiation of algorithms written in C/C++. ACM TOMS, 22(2):131�167, June
1996.

[9] Andreas Griewank. On automatic di�erentiation. In M. Iri and K. Tanabe, editors, Mathe-
matical Programming: Recent Developments and Applications, pages 83�108. Kluwer Academic
Publishers, Amsterdam, 1989.

[10] IBM. The IBM Optimization Solutions and Library (OSL) for Multi-platforms Version 2.
ism.boulder.ibm.com/es/oslv2/features/welcome.htm.

[11] IBM. Mathematical Programming System Extended/370 (MPSX/370) Program Reference Manual.

12

[12] ILOG. Using the CPLEX Callable Library, 1997. www.cplex.com.

[13] Ketron Management Science. MPSIII, Mathematical Programming Software, 1998.
www.ketron.com.

[14] Robert L. Kruse. Programming with Data Structures. Prentice Hall, 1989.

[15] Maximal Software Inc. MPL Modeling System 4.1, User's guide, 1999. www.maximal-usa.com.

[16] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer Verlag, August 1999.

[17] Optimal Methods Inc. GRG2 Users Guide. www.optimalmethods.com.

[18] Robert Sedgewick. Algorithms in C. Addison�Wesley Publishing Company, 1990.

[19] Erlendur S. Thorsteinsson. xMPS, the extended MPS format for non-linear programs. Technical
Report 99�224, Carnegie Mellon University Mathematical Sciences Department, December 1999.

13

A Non-linear operators�

Operator (O) Tag Keyword Constant @O=@L @O=@R
OpNONE NONE 0

L+ R OpADD ADD 1 1 1

L� R OpSUB SUB 2 1 �1
L� R OpMUL MULT 3 R L
L=R OpDIV DIV 4 1=R �L=R2

�L OpNEG NEG 5 �1
L+ R OpSUM SUM 6 1 1

L2 OpSQR SQR 7 2L
LR OpPOW POW 8 LR�1 lnL� LRp
L OpSQRT SQRT 9 1=(2

p
L)

L%R OpMOD MOD 10
eL OpEXP EXP 11 eL

lnL OpLOG LOG 12 1=L
logL OpLOG10 LOG10 13 1=(L ln 10)

sinL OpSIN SIN 14 cosL
cosL OpCOS COS 15 � sinL
tanL OpTAN TAN 16 1=cos2 L

arcsinL OpASIN ASIN 17 1=(
p
1� L2)

arccosL OpACOS ACOS 18 �1=(p1� L2)

arctanL OpATAN ATAN 19 1=(1 + L2)

arctan (L=R) OpATAN2 ATAN2 20 1=(L(1 + (L=R)2)) �R=(L2 +R2)

sinhL OpSINH SINH 21 coshL
coshL OpCOSH COSH 22 sinhL

tanhL OpTANH TANH 23 1=(cosh2 L)

arcsinhL OpASINH ASINH 24 1=
p
1 + L2

arccoshL OpACOSH ACOSH 25 �1=p1 + L2

arctanhL OpATANH ATANH 26 1=(1� L2)

sign(L) OpSIGN SIGN 27
j L j OpABS ABS 28
dLe OpCEIL CEIL 29
bLc OpFLOOR FLOOR 30
round(L) OpROUND ROUND 31
trunc(L) OpTRUNC TRUNC 32

Table 1: Non-linear operators.

�Please visit www.maximal-usa.com/xmps for a current version of supported operators. Suggestions for additional

operators should be submitted to xmps@maximal-usa.com.

14

