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Recent extensions to the SMPS format have vastly increased the range of stochastic linear programs that
can be expressed within the format. This paper illustrates some of the features of SMPS using sample
problems from the literature. For each problem, we give the general mathematical formulation, a small
illustrative instance and the SMPS core, time and stoch files.
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1. Introduction

Stochastic programming is an active area of research due to recent advances in computing power.
However, for benchmarking and comparison of algorithms it is essential to have a way of exchang-
ing test problem sets. The situation was best described by Klingman et al. (1974) who write: “One of
the problems . . . in trying to benchmark codes based on different methodologies . . . [is] their lack of uni-
formity for input specification. This nonstandardization of problem specification . . . is most frustrating
and has hampered benchmarking since researchers are reluctant to recode their input routines.” Kling-
man et al. (1974) were writing about network problems, but their remarks could justifiably be applied
to stochastic programming as well.

The SMPS format is available to describe stochastic linear and quadratic programs (LP and QP,
respectively). It is based on the well-known MPS format (Argonne National Laboratory, 1996), the
de facto standard for linear programs, and has gone through several revisions (see Birge et al., 1987;
Edwards, 1988; Gassmann, 2005; Gassmann & Schweitzer, 2001).

While it is widely used, SMPS does not enjoy universal acceptance. Part of the reason is that the
record-based structure of MPS is deemed to be overly rigid and limiting, but we feel that at least
in part the reason is a lack of examples that describe the many and varied constructs of the SMPS
format.

We will explain most of the current features of SMPS using sample problems. Many of these prob-
lems have appeared in the literature. Length restrictions prohibit the inclusion of complete examples
in every instance, so in places we will only show the most salient features of a model. Data files giv-
ing the full examples can be downloaded from the first author’s web site (myweb.dal.ca/gassmann/
RESEARCH.html).

†Email: hgassman@mgmt.dal.ca
‡Email: bjarni@maximalsoftware.com

c© The authors 2007. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

 IMA Journal of Management Mathematics Advance Access published March 6, 2007



2 of 31 H. I. GASSMANN AND B. KRISTJÁNSSON

Unlike other collections of stochastic programs (see, e.g. Felt et al., 2001; Holmes), whose main
focus is archiving and benchmarking, the problems offered in this paper have been selected mainly for
variety, both of application area and of model type and features.

The structure of the paper is as follows: A brief introduction to stochastic programs and the SMPS
format is presented in Section 2. The subsequent sections highlight different modelling possibilities.
Sections 3 and 4 deal with explicit event trees, having deterministic and stochastic problem dimensions,
respectively. Sections 5 and 6 illustrate the work with implicit event trees; Section 5 deals with both dis-
crete and continuous univariate distributions and Section 6 features multidimensional blocks. The SMPS
format also supports a network option; a problem of this type is shown in Section 7. The mixing of LP
and network structure is explained in Section 8, and a simple recourse problem is constructed in Sec-
tion 9. Section 10 shows probabilistic constraints and objectives. We end with some concluding remarks.

2. Problem formulation and a brief introduction to SMPS

There are many different types of stochastic programs. We repeat here a taxonomy (see Fig. 1) that was
first given in Gassmann & Ireland (1996).

For our purposes, the most general formulation of the problem is as follows:

Opt (c1, c2, . . . , cT )′(x1, x2, . . . , xT )

+ 1

2
(x1, x2, . . . , xT )′

⎡
⎢⎢⎢⎢⎣

Q11 Q12 . . . Q1T

Q21 Q22 . . . Q2T

...
...

. . .
...

QT 1 QT 2 . . . QT T

⎤
⎥⎥⎥⎥⎦ (x1, x2, . . . , xT )

s.t. A11x1 + A12x2 + · · · + A1T xT ∼ b1,

A21x1 + A22x2 + · · · + A2T xT � b2,

...
...

...
...

AT 1x1 + AT 2x2 + · · · + AT T xT � bT ,

li � xi � ui , i = 1, . . . , T,

xi ∈ Rn1
i × Zn2

i , i = 1, . . . , T .

Constraint matrices Ai j with i > j define so-called global (or linking) constraints; special algo-
rithms are necessary to deal with them. If Ai j = 0 for j > i + 1, the problem is said to possess
‘staircase structure’.

All the data items except A11, Q11, c1, b1, l1 and u1 can be stochastic. The symbol ‘∼’ stands for an
arbitrary relation (�, =, �) and � indicates that constraints involving random variables may be required
to hold for every possible realization, or with probability one, or subject to a probabilistic constraint.
The last item includes 1D and multidimensional constraints of the form

Pr{Bt1x1 + Bt2x2 + · · · + Btt xt ∼ bt } ∼ αt .

If all the ‘�-type’ constraints are of this type, then the problem is termed a ‘chance-constrained prob-
lem’. Individual chance constraint problems are characterized by having only 1D chance constraints;
a single multidimensional chance constraint (usually with T = 2 and no second-stage variables) defines
a joint chance constraint problem.
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FIG. 1. A taxonomy of stochastic programming problems.

If on the other hand all the �-type constraints must hold surely or almost surely (and if T > 1), then
the problem is termed a ‘recourse problem’. In this case, at least one recourse decision follows each ob-
servation of random variables to allow the decision maker to correct any adverse effect of randomness—
usually at a cost. Two-stage recourse problems in which the second-stage constraint matrix A22 is of the
form A22 = [I − I ] are said to have ‘simple recourse’. (Simple recourse can also be thought of as a
penalty on the violation of a constraint in the presence of uncertainty.)

There is no enough space for a full description of the SMPS format here; for that the user is di-
rected to Gassmann & Schweitzer (2001) or Gassmann (2005). However, we will present a very brief
introduction.

The SMPS format makes use of three text files. All have set record structures, alternating header
records that mark the start of various sections (in fixed order) with data records that hold the data for
each section.

The core file fixes the problem dimensions and deterministic coefficients as well as the locations
of all the stochastic coefficients. The core file may be in the usual MPS format (Argonne National
Laboratory, 1996) or it may use a network format similar to Klingman et al. (1974). It is also possible
to mix the two formats.

The time file describes the dynamic structure of the problem and breaks the data into stages. If the
core file is given in time-ordered fashion, then this is a simple matter of recording the first row and
column of each stage, otherwise a full list of rows and columns must be given along with the stage to
which each of them belongs.

Finally, the stoch file gives the stochastic data. There are many different ways to present this in-
formation. The ultimate goal is to produce an event tree, and the two major ways this can be done use
implicit and explicit constructions. (The two are mutually exclusive.) Other features of the stoch file
include linear and quadratic penalties for violating a stochastic constraint, probabilistic constraints and
objectives and integrated chance constraints.

This paper does not concern itself with the construction of appropriate scenarios, a topic treated,
for instance, in Dupačová et al. (2000, 2003) and Pflug (2001). We assume that the relevant stochastic
structure has been prepared beforehand, so that the entire stochastic program is ready to be cast in the
SMPS format.
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3. Scenarios

This is the most frequently used format in practice, due to its flexibility, which permits modelling of a
variety of dependencies, both within and across time periods. This form of the stoch file can be used for
recourse problems with fixed problem dimensions and leads to an explicit formulation of the event tree.

Every scenario is a path from the root of the event tree to one of the leaves. However, scenarios may
share data items for several stages and thus be indistinguishable until the first data item is encountered.
It is customary in this instance to specify only one set of data items (and only one set of induced deci-
sions) until the branch point occurs. One ‘parent’ scenario holds the information, while the ‘children’
branching from it are thought to spring into existence only after the branch point. This idea of labelling
the data is quite old and goes back to some work by Lane & Hutchinson (1980).

Each child scenario inherits all the parent scenario’s values unless specifically replaced in the stoch
file. Hence, the stoch file needs to record only those values that differ from the parent scenario.

We illustrate the use of the ‘SCENARIOS’ format with an asset management problem taken from the
text by Birge & Louveaux (1997). A decision maker has to determine the optimal investment levels in
various investment opportunities subject to uncertain returns. At predetermined intervals, the assets can
be redistributed, based on the returns realized to date. The objective is to meet a certain investment goal
at the end of the planning horizon; falling short of the financial goal carries a penalty. The mathematical
formulation of this problem is as follows:

min
∑
s∈ST

ps[4w(s) − y(s)]

s.t.
∑
i∈I

x1i = b,

−
∑
i∈I

r2(s)x1i +
∑
i∈I

x2i (s) = 0, s2 ∈ S2,

−
∑
i∈I

rt+1(st+1)xti (st ) +
∑
i∈I

xt+1,i (st+1) = 0, st ∈ St , st+1 ∈ σ(st+1), t = 2, . . . , T − 1,

∑
i∈I

rT (sT )xT−1,i (sT−1) − y(sT ) + w(sT ) = C, sT−1 ∈ ST−1, sT ∈ σ(sT−1),

xti � 0, t = 1, . . . , T, i ∈ I, y � 0, w � 0,

where b is the initial budget, C is the capital target at the end of the planning horizon, T is the number
of stages considered, I is the set of investment opportunities, St is the set of scenario bundles indistin-
guishable at time t (where each scenario bundle is defined as the set of scenarios that share the same
history up to and including stage t—see Rockafellar & Wets, 1991) and σt+1(st ) is the set of branches
that occur in scenario bundle st after time t . (Each element of σt+1(st ) is another scenario bundle st+1,
which is a subset of st . Technically, the sets St form a ‘filtration’ of the probability space spanned by
the set of scenarios. We will identify each scenario bundle with the scenario of the lowest number that
is contained in it.)

The decision variables xti (st ) represent the amount of money invested in instrument i at the begin-
ning of stage t under scenario bundle st ; rt+1,i (st+1) represents the return on this investment (per dollar
invested) during stage t if scenario st+1 occurs by the end of stage t ; y(sT ) is the amount of terminal
wealth in excess of the target C and w(sT ) is the amount by which the terminal wealth falls short of the
target if scenario sT is observed.
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FIG. 2. A scenario tree for the investment problem in Birge and Louveaux.

The data given in Birge & Louveaux (1997) provide two rebalancing points (after 5 and 10 years),
which, together with the initial decision point and the final valuation point at the horizon, define four
distinct stages. There are two investments, stocks and bonds, and the stochastic data provided set up
the event tree of Fig. 2, leading to the following scenario bundles: S2 = {{1, 2, 3, 4}, {5, 6, 7, 8}},
σ3({1, 2, 3, 4}) = {{1, 2}, {3, 4}}, σ3({5, 6, 7, 8}) = {{5, 6}, {7, 8}}, S3 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
and S4 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}.

We next give the SMPS representation of this instance of the asset management problem, starting
with the core file.

NAME Asset Mgt
ROWS
N WEALTH
E BUDGET
E BAL1
E BAL2
E BAL3

COLUMNS
STOCK1 BUDGET 1.00 BAL1 -1.15
BONDS1 BUDGET 1.00 BAL1 -1.13
STOCK2 BAL1 1.00 BAL2 -1.15
BONDS2 BAL1 1.00 BAL2 -1.13
STOCK3 BAL2 1.00 BAL3 -1.15
BONDS3 BAL2 1.00 BAL3 -1.13
SHORT BAL3 -1.00 WEALTH 1.00
OVER BAL3 1.00 WEALTH -1.00

RHS
RHS BUDGET 55.00 BAL3 80.00

ENDATA

The time file provides the markers to split this core file into four stages, named ‘TODAY’, ‘YEAR 5’,
‘YEAR 10’ and ‘HORIZON’. Since the rows and columns were given in the core file in temporal order,
only the first row and column in each stage are recorded and the stage information for the remaining
rows and columns can be inferred by the system.
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TIME Asset Mgt
PERIODS

STOCK1 BUDGET TODAY
STOCK2 BAL1 YEAR_5
STOCK3 BAL2 YEAR_10
SHORT BAL3 HORIZON

ENDATA

The stoch file defines eight scenarios and has the following form. Each record marked ‘SC’ denotes
the start of a new scenario, its (path) probability, which scenario it branches from and the stage in which
the branch occurs, i.e. the first stage for which the information of the descendant scenario differs from
that of the parent.

The actual data are given on the records following the ‘SC’ record. For instance, scenario ‘SCEN 2’
shares the return of scenario ‘SCEN 1’ for the first 10 years, but over the last 5 years SCEN 1 has good
performance of stocks, while SCEN 2 represents a scenario where stocks fare badly in the last stage.

Only those data items that differ from the parent scenario must be present; data items not referenced
are inherited from the parent scenario. (In this problem, all the records containing the values −1.25 and
−1.14 are redundant; their values could have been inferred from the core file and previously recorded
data. We chose to include them for somewhat easier reading.)

STOCH Asset Mgt
SCEN
SC SCEN_1 ’ROOT’ 0.125 TODAY

STOCK1 BAL1 -1.25
BONDS1 BAL1 -1.14
STOCK2 BAL2 -1.25
BONDS2 BAL2 -1.14
STOCK3 BAL3 -1.25
BONDS3 BAL3 -1.14

SC SCEN_2 SCEN_1 0.125 HORIZON
STOCK3 BAL3 -1.06
BONDS3 BAL3 -1.12

SC SCEN_3 SCEN_1 0.125 YEAR_10
STOCK2 BAL2 -1.06
BONDS2 BAL2 -1.12
STOCK3 BAL3 -1.25
BONDS3 BAL3 -1.14

SC SCEN_4 SCEN_3 0.125 HORIZON
STOCK3 BAL3 -1.06
BONDS3 BAL3 -1.12

SC SCEN_5 SCEN_1 0.125 YEAR_5
STOCK1 BAL1 -1.06
BONDS1 BAL1 -1.12
STOCK2 BAL2 -1.25
BONDS2 BAL2 -1.14
STOCK3 BAL3 -1.25
BONDS3 BAL3 -1.14

SC SCEN_6 SCEN_5 0.125 HORIZON
STOCK3 BAL3 -1.06
BONDS3 BAL3 -1.12
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SC SCEN_7 SCEN_5 0.125 YEAR_10
STOCK2 BAL2 -1.06
BONDS2 BAL2 -1.12
STOCK3 BAL3 -1.25
BONDS3 BAL3 -1.14

SC SCEN_8 SCEN_7 0.125 HORIZON
STOCK3 BAL3 -1.06
BONDS3 BAL3 -1.12

ENDATA

4. Nodes

If the problem dimensions may depend on past events, then the SCENARIOS format of Section 3
becomes cumbersome and potentially wasteful. SMPS allows an explicit node by node construction of
the event tree. Stochastic problem dimensions are not used very often in practice. We are aware of only
one example (Fleten et al., 2002) where they appeared in the literature. However, this example is too
large to be reproduced here. Instead, we reprise an artificial example that first appeared in Gassmann &
Schweitzer (2001).

The example describes a three-stage production problem. At the start, only a single item (‘widgets’)
is produced. If the demand in stage 1 is low, production ceases entirely (the company goes out of
business); if the demand in stage 1 is medium, production of the single item continues; and if demand in
stage 1 is high, a second item (‘gadgets’) is introduced. The mathematical formulation of this problem
is as follows:

min c01 p01 +
∑
s∈S1

π1s (k1s x1s + g1s y1s − r1s z1s) + π12c12 p12 + π14 (c14 p14 + l14q14)

+
∑

t∈S2(2)

π12π2t (g2t y2t + h2t x2t − r2t z2t )

+
∑

t∈S2(4)

π14π2t (g2t y2t + h2t x2t − r2t z2t + f2sv2s + n2su2s − m2sw2s)

s.t. p01 � K1,

p01 − x1s − z1s = 0, s ∈ S1,

− p01 + z1s � 0, s ∈ S1,

y1s + z1s = d1s, s ∈ S1,

x1s + p1s − x2t − z2t = 0, s = 2, 4, t ∈ S2(s),

− p1s + z2t � 0, s = 2, 4, t ∈ S2(s),

y2t + z2t = d2t , s = 2, 4, t ∈ S2(s),

p12 � K1,

q14 − u2t − w2t = 0, t ∈ S2(4),

ap14 + bq14 � K2,

− q14 + w2t � 0, t ∈ S2(4),

v2t + w2t = e2t , t ∈ S2(4),

pi j , qi j , xi j , yi j , zi j , ui j , vi j , wi j � 0, i = 0, . . . , 2, j ∈ Si ,
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FIG. 3. An event tree with a coffin state.

where
ci j is the cost of producing one widget in stage i under scenario j ,
pi j is the number of widgets produced in stage i under scenario j ,
gi j is the unit shortage cost of widgets in stage i under scenario j ,
yi j is the number of widgets short in stage i under scenario j ,
hi j is the cost of holding one widget in storage in stage i under scenario j ,
ki j is the cost of holding one widget in storage and disposing it if production is stopped in stage i

under scenario j ,
xi j is the number of widgets stored from stage i − 1 to stage i under scenario j ,
ri j is the revenue from selling one widget in stage i under scenario j ,
zi j is the number of widgets sold in stage i under scenario j ,
di j is the number of widgets demanded in stage i under scenario j ,
li j is the cost of producing one gadget in stage i under scenario j ,
qi j is the number of gadgets produced in stage i under scenario j ,
fi j is the unit shortage cost of gadgets in stage i under scenario j ,
vi j is the number of gadgets short in stage i under scenario j ,
ni j is the cost of holding one gadget in storage in stage i under scenario j ,
ui j is the number of gadgets stored from stage i − 1 to stage i under scenario j ,
mi j is the revenue from selling one gadget in stage i under scenario j ,
wi j is the number of gadgets sold in stage i under scenario j ,
ei j is the number of gadgets demanded in stage i under scenario j ,
K1 is the production limit of widgets,
K2 is the resource availability for the production of widgets and gadgets,
a is the amount of the resource needed in the production of one widget,
b is the amount of the resource needed in the production of one gadget,
πi j is the conditional probability of reaching scenario j in stage i given the parent scenario in

stage i − 1.
The corresponding event tree with coffin state is given in Fig. 3. The scenario bundles associated

with this tree are S1 = {{1}, {2, 3}, {4, 5, 6, 7}}, S2(2) = {2, 3} and S2(4) = {4, 5, 6, 7}.
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The core file for this problem is optional. It may contain data for one complete or partial scenario—
typically including the first stage—and can be referenced node by node from the stoch file. In this
example, we set up the first-stage production decision in the core file and leave all the rest to the stoch
file.

NAME ProdDemo
ROWS
N COST
L CAP0

COLUMNS
PROD0 CAP0 1.0 COST 2.0

RHS
RHS CAP0 5000.0

ENDATA

The time file does not have to be present and it does not have to describe the full temporal struc-
ture. It must contain enough information to separate those nodes of the core file that are referenced
explicitly in the stoch file.

TIME ProdDemo
PERIODS

PROD0 COST STAGE0
ENDATA

The stoch file builds the event tree. In this case, the root node is taken from the core file; the second-
stage nodes are created from scratch, as are the third-stage nodes for scenarios 2 and 4, and the remaining
third-stage nodes are copied and modified appropriately.

STOCH ProdDemo
NODES
CP NODE01 ’ROOT’ 1.0 ’CORFIL’

*
* Node11 has low demand, so the production is shut down

*------------------------------------------------------
MK NODE11 NODE01 0.3

ROWS
N COST
E BALAN1
E DEMD1
L AVAIL1

COLUMNS
PROD0 BALAN1 1.0 AVAIL1 -1.0
HOLD1 BALAN1 -1.0 COST 0.6
SHORT1 DEMD1 1.0 COST 0.1
SELL1 BALAN1 -1.0 COST -4.0
SELL1 AVAIL1 1.0 DEMD1 1.0

RHS
RHS DEMD1 1000.0

ENDATA
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*
* Node12 has medium demand; continue operations

*----------------------------------------------
MK NODE12 NODE01 0.5

ROWS
N COST
E BALAN1
E DEMD1
L AVAIL1
L CAP1

COLUMNS
PROD0 BALAN1 1.0 AVAIL1 -1.0
HOLD1 BALAN1 -1.0 COST 0.3
SHORT1 DEMD1 1.0 COST 0.1
SELL1 BALAN1 -1.0 COST -4.0
SELL1 AVAIL1 1.0 DEMD1 1.0
PROD1 CAP1 1.0 COST 2.0

RHS
RHS CAP1 5000.0 DEMD1 3000.0

ENDATA

*
* Third-stage operations; one product only

*-----------------------------------------
MK NODE22 NODE12 0.5

ROWS
N COST
E BALAN2
E DEMD2
L AVAIL2

COLUMNS
HOLD1 BALAN2 1.0
PROD1 BALAN2 1.0 AVAIL2 -1.0
HOLD2 BALAN2 -1.0 COST 0.3
SHORT2 DEMD2 1.0 COST 0.1
SELL2 BALAN2 -1.0 COST -4.0
SELL2 AVAIL2 1.0 DEMD2 1.0

RHS
RHS DEMD2 4000.0

ENDATA

*
CP NODE23 NODE12 0.5 NODE22

RHS DEMD2 5000.0

*
* Node14 has high demand: introduce the second product

*-----------------------------------------------------
MK NODE14 NODE01 0.2

ROWS
N COST
E BALAN1
E DEMD1
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L AVAIL1
L CAP1

COLUMNS
PROD0 BALAN1 1.0 AVAIL1 -1.0
HOLD1 BALAN1 -1.0 COST 0.3
SHORT1 DEMD1 1.0 COST 0.1
SELL1 BALAN1 -1.0 COST -4.0
SELL1 AVAIL1 1.0 DEMD1 1.0
PROD1 CAP1 1.5 COST 2.0
PRODG1 CAP1 2.0 COST 2.5

RHS
RHS CAP1 12000.0 DEMD1 5000.0

ENDATA

*
* Third-stage operations; two products

*-------------------------------------
MK NODE24 NODE14 0.2

ROWS
N COST
E BALAN2
E DEMD2
L AVAIL2
E BALAN2G
E DEMD2G
L AVAIL2G

COLUMNS
HOLD1 BALAN2 1.0
PROD1 BALAN2 1.0 AVAIL2 -1.0
PRODG1 BALAN2G 1.0 AVAIL2G -1.0
HOLD2 BALAN2 -1.0 COST 0.3
SHORT2 DEMD2 1.0 COST 0.1
SELL2 BALAN2 -1.0 COST -4.0
SELL2 AVAIL2 1.0 DEMD2 1.0
HOLD2G BALAN2G -1.0 COST 0.3
SHORT2G DEMD2G 1.0 COST 0.1
SELL2G BALAN2G -1.0 COST -4.0
SELL2G AVAIL2G 1.0 DEMD2G 1.0

RHS
RHS DEMD2G 5000.0 DEMD2 4000.0

ENDATA

*
CP NODE25 NODE14 0.3 NODE24

RHS DEMD2G 4000.0 DEMD2 4000.0

*
CP NODE26 NODE14 0.4 NODE24

RHS DEMD2G 4000.0 DEMD2 5000.0

*
CP NODE27 NODE14 0.1 NODE24

RHS DEMD2G 5000.0 DEMD2 5000.0
ENDATA
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5. INDEP

The INDEP format is used to build an event tree implicitly from 1D marginal information. We illustrate
the format using two versions of a power generation model first employed by Louveaux & Smeers
(1988). A decision maker has to decide on the capacities x j of a number of technologies for the gener-
ation of power and has to operate the resulting facility so as to satisfy uncertain demand. Mathematically,
this can be formulated as follows:

min
∑
j∈J

c j x j +
∑
j∈J

∑
s∈S

f j ps y js

s.t.
∑
j∈J

c j x j � b,

∑
j∈J

x j � M,

− x j +
∑
s∈S

y js � 0, j ∈ J,

∑
j∈J

y js = ωs j , s ∈ S.

We use data that have been slightly modified from the original source and were taken from Higle &
Sen (1996).

Core file:

NAME PGP2
ROWS
N FOBJ
G MXDEMD
L BUDGET
L CAPEQ1
L CAPEQ2
L CAPEQ3
L CAPEQ4
G DNODE1
G DNODE2
G DNODE3

COLUMNS
INVEQ1 FOBJ 10.0 MXDEMD 1.0
INVEQ1 BUDGET 10.0 CAPEQ1 -1.0
INVEQ2 FOBJ 7.0 MXDEMD 1.0
INVEQ2 BUDGET 7.0 CAPEQ2 -1.0
INVEQ3 FOBJ 16.0 MXDEMD 1.0
INVEQ3 BUDGET 16.0 CAPEQ3 -1.0
INVEQ4 FOBJ 6.0 MXDEMD 1.0
INVEQ4 BUDGET 6.0 CAPEQ4 -1.0
EQ1ND1 FOBJ 40.0 CAPEQ1 1.0
EQ1ND1 DNODE1 1.0
EQ1ND2 FOBJ 24.0 CAPEQ1 1.0
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EQ1ND2 DNODE2 1.0
EQ1ND3 FOBJ 4.0 CAPEQ1 1.0
EQ1ND3 DNODE3 1.0
EQ2ND1 FOBJ 45.0 CAPEQ2 1.0
EQ2ND1 DNODE1 1.0
EQ2ND2 FOBJ 27.0 CAPEQ2 1.0
EQ2ND2 DNODE2 1.0
EQ2ND3 FOBJ 4.5 CAPEQ2 1.0
EQ2ND3 DNODE3 1.0
EQ3ND1 FOBJ 32.0 CAPEQ3 1.0
EQ3ND1 DNODE1 1.0
EQ3ND2 FOBJ 19.2 CAPEQ3 1.0
EQ3ND2 DNODE2 1.0
EQ3ND3 FOBJ 3.2 CAPEQ3 1.0
EQ3ND3 DNODE3 1.0
EQ4ND1 FOBJ 55.0 CAPEQ4 1.0
EQ4ND1 DNODE1 1.0
EQ4ND2 FOBJ 33.0 CAPEQ4 1.0
EQ4ND2 DNODE2 1.0
EQ4ND3 FOBJ 5.5 CAPEQ4 1.0
EQ4ND3 DNODE3 1.0
PEN1 FOBJ 1000.0 CAPEQ1 -1.0
PEN2 FOBJ 1000.0 CAPEQ2 -1.0
PEN3 FOBJ 1000.0 CAPEQ3 -1.0
PEN4 FOBJ 1000.0 CAPEQ4 -1.0

RHS
RHS MXDEMD 15.0
RHS BUDGET 220.0
RHS DNODE1 5.0
RHS DNODE2 4.0
RHS DNODE3 3.0

ENDATA

Time file:

TIME PGP2
PERIODS

INVEQ1 FOBJ TIME1
EQ1ND1 CAPEQ1 TIME2

ENDATA

The first stoch file sets up independent discrete distributions for the three demands. The demand in
node ‘DNODE1’ has nine realizations and the other two have eight realizations each. Since the three
random elements are independent of each other, this defines 576 scenarios altogether.

STOCH PGP2
INDEP DISCRETE

RHS DNODE1 0.5 0.00005
RHS DNODE1 1.0 0.00125
RHS DNODE1 2.5 0.02150
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RHS DNODE1 3.5 0.28570
RHS DNODE1 5.0 0.38300
RHS DNODE1 6.5 0.28570
RHS DNODE1 7.5 0.02150
RHS DNODE1 9.0 0.00125
RHS DNODE1 9.5 0.00005

*
RHS DNODE2 0.0 0.00130
RHS DNODE2 1.5 0.02150
RHS DNODE2 2.5 0.28570
RHS DNODE2 4.0 0.38300
RHS DNODE2 5.5 0.28570
RHS DNODE2 6.5 0.02150
RHS DNODE2 8.0 0.00125
RHS DNODE2 8.5 0.00005

*
RHS DNODE3 0.0 0.00130
RHS DNODE3 0.5 0.02150
RHS DNODE3 1.5 0.28570
RHS DNODE3 3.0 0.38300
RHS DNODE3 4.5 0.28570
RHS DNODE3 5.5 0.02150
RHS DNODE3 7.0 0.00125
RHS DNODE3 7.5 0.00005

ENDATA

A second stoch file is provided to show continuous distributions, as originally envisioned in
Louveaux & Smeers (1988). Here, the demand is normally distributed with equal variance. The ex-
pected demands in the three locations are 5, 4 and 3, respectively.

STOCH PGP2
INDEP NORMAL

RHS DNODE1 5.0 1.5625

*
RHS DNODE2 4.0 1.5625

*
RHS DNODE3 3.0 1.5625

ENDATA

6. Blocks

This third version of the power generation problem of Section 5 indicates the use of random vectors that
are assumed to be independent from period to period although they may exhibit intra-period dependence.
This stoch file sets up a discrete random vector with six realizations, i.e. six scenarios.

STOCH PGP2
BLOCKS DISCRETE
BL BLOCK_1 PERIOD_2 0.005

RHS DNODE1 1.0
RHS DNODE2 1.5
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RHS DNODE3 0.5
BL BLOCK_1 PERIOD_2 0.045

RHS DNODE1 2.5
RHS DNODE2 2.5
RHS DNODE3 1.5

BL BLOCK_1 PERIOD_2 0.45
RHS DNODE1 4.0
RHS DNODE2 3.0
RHS DNODE3 2.0

BL BLOCK_1 PERIOD_2 0.45
RHS DNODE1 6.0
RHS DNODE2 5.0
RHS DNODE3 4.0

BL BLOCK_1 PERIOD_2 0.045
RHS DNODE1 8.0
RHS DNODE2 7.5
RHS DNODE3 6.5

BL BLOCK_1 PERIOD_2 0.005
RHS DNODE1 9.5
RHS DNODE2 8.5
RHS DNODE3 7.5

ENDATA

7. Network

The problem in this section is taken from Mulvey & Vladimirou (1989). It represents a simplified in-
vestment problem, which is given as a generalized network, with stochastic gains and losses on the
arcs, representing random investment returns. The problem has three time periods, but it is set up as a
two-stage problem.

The mathematical formulation of this problem is as follows:

min
∑
s∈S

psws

s.t. x f 0 + y f 0 = B f , f ∈ F,

xb0 + yb0 = Bb,

−
∑
f ∈F

(1 − ξ f 0)x f 0 +
∑
f ∈F

u f 0 + xb0 − ub0 +
T∑

t=1

v0t = C0,

y f 0 + (1 − η f 0)u f 0 − z f 0 = 0, f ∈ F,

yb0 + ub0 − (1 − Rb0)zb0 = 0,

(1 + R f s0)z f 0 − x f s1 − y f s1 = 0, f ∈ F, s ∈ S1,

zb0 − xbs1 − ybs1 = 0, s ∈ S1,

−
∑
f ∈F

(1 − ξ f t )x f st +
∑
f ∈F

u f st + xbst − ubst ,

−
∑
p<t

(1 + Rpst )v pst +
∑
p>t

vtsp = Cst , t = 1, . . . , T, s ∈ St ,
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y f st + (1 − η f t )u f st − z f st = 0, f ∈ F, t = 1, . . . , T, s ∈ St ,

ybst + ubst − (1 − Rbst )zbst = 0, t = 1, . . . , T, s ∈ St ,

(1 + R f st )z f,a(s),t−1 − x f st − y f st = 0, f ∈ F, t = 1, . . . , T − 1, s ∈ St ,

zb,a(s),t−1 − xbst − ybst = 0, t = 1, . . . , T − 1, s ∈ St ,∑
f ∈F

(1 + R f sT )z f sT

+
∑
p�T

(1 + Rp,s,T+1)v p,s,T+1 − zbsT − ws = 0, s ∈ S,

where
F is the set of risky assets,
T is the number of time stages,
S is the set of scenarios and St is the set of scenarios in stage t , where ST = S,
a(s) is the ancestor scenario of scenario s,
B f are the initial holdings in asset f in F ,
Bb is the initial liability,
ξ f t is the transaction cost for selling one unit of asset f in period t ,
η f t is the transaction cost for buying one unit of asset f in period t ,
R f st is the rate of return for risky asset f in period t under scenario s,
Rbst is the interest rate for borrowing in period t under scenario s,
Rpst is the rate of return for the riskless asset purchased at time p and maturing at time t ,
Cst is the cash inflow (if >0) or outflow (if <0) in period t under scenario s,
x f st is the amount of risky asset f sold in period t under scenario s,
y f st is the amount of risky asset f carried forward (held) in period t under scenario s,
u f st is the amount of risky asset f purchased in period t under scenario s,
xbst is the amount of liability paid back at time t under scenario s,
ybst is the amount of liability carried forward at time t under scenario s,
ubst is the amount of new borrowing in period t under scenario s,
v pst is the amount of riskless asset purchased at time p and maturing at time t under scenario s,
z f st are the holdings in asset f after the portfolio revision of stage t under scenario s,
zbst is the amount of debt after the portfolio revision of stage t under scenario s,
ws is the net wealth at the end of the horizon in scenario s,
ps is the probability that scenario s occurs.
The network can also be represented pictorially as in Fig. 4.
The core file for this problem uses ‘NODES’ and ‘ARCS’ headers instead of ‘ROWS’ and

‘COLUMNS’. The structure of the data records in the ARCS section is slightly different from the MPS
form.

NAME Invest
NODES
N OBJECT
E ND_11
E ND_12
E ND_13
E ND_14
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FIG. 4. Generalized network representing the investment problem of Mulvey and Vladimirou.

E ND_15
E ND_21
E ND_22
E ND_23
E ND_24
E ND_25
E ND_31
E ND_32
E ND_33
E ND_34
E ND_35
E ND_41

ARCS
ND_11 ND_15 0.0 0.3 0.0 0.99700
ND_11 ND_21 0.0 0.6 0.0 1.02871
ND_12 ND_22 0.0 0.4 0.0 1.04982
ND_13 ND_15 0.0 0.2 0.0 1.00000
ND_13 ND_23 0.0 0.8 0.0 1.01973
ND_14 ND_24 0.0 0.3 0.0 1.02534
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ND_15 ND_11 0.0 0.6 0.0 0.99700
ND_15 ND_12 0.0 0.4 0.0 0.99000
ND_15 ND_13 0.0 0.8 0.0 1.00000
ND_15 ND_14 0.0 0.3 0.0 0.99500
ND_15 ND_25 0.0 0.0 0.0 1.01650
ND_21 ND_25 0.0 1.E+30 0.0 0.99700
ND_21 ND_31 0.0 1.E+30 0.0 1.02871
ND_22 ND_25 0.0 1.E+30 0.0 0.99000
ND_22 ND_32 0.0 1.E+30 0.0 1.04982
ND_23 ND_25 0.0 1.E+30 0.0 1.00000
ND_23 ND_33 0.0 1.E+30 0.0 1.01973
ND_24 ND_25 0.0 1.E+30 0.0 0.99500
ND_24 ND_34 0.0 1.E+30 0.0 1.02534
ND_25 ND_21 0.0 1.E+30 0.0 0.99700
ND_25 ND_22 0.0 1.E+30 0.0 0.99000
ND_25 ND_23 0.0 1.E+30 0.0 1.00000
ND_25 ND_24 0.0 1.E+30 0.0 0.99500
ND_25 ND_35 0.0 1.E+30 0.0 1.01650
ND_31 ND_35 0.0 1.E+30 0.0 0.99700
ND_31 ND_41 0.0 1.E+30 0.0 1.02871
ND_32 ND_35 0.0 1.E+30 0.0 0.99000
ND_32 ND_41 0.0 1.E+30 0.0 1.04982
ND_33 ND_35 0.0 1.E+30 0.0 1.00000
ND_33 ND_41 0.0 1.E+30 0.0 1.01973
ND_34 ND_35 0.0 1.E+30 0.0 0.99500
ND_34 ND_41 0.0 1.E+30 0.0 1.02534
ND_35 ND_31 0.0 1.E+30 0.0 0.99700
ND_35 ND_32 0.0 1.E+30 0.0 0.99000
ND_35 ND_33 0.0 1.E+30 0.0 1.00000
ND_35 ND_34 0.0 1.E+30 0.0 0.99500
ND_35 ND_41 0.0 1.E+30 0.0 1.01650
ND_41 OBJECT -1.0

SUPPLY
RHS ND_11 0.3000000000
RHS ND_13 0.2000000000

ENDATA

The columns in this network problem are named implicitly, so the time file must include a special
marker in order to be parsed properly:

TIME Invest
PERIODS

’NETWRK’ OBJECT STAGE_1
’NETWRK’ ND_11 STAGE_2

ENDATA

The stoch file defines a 12D random vector with three possible realizations:

STOCH Invest
BLOCKS DISCRETE
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BL BLOCK_1 STAGE_2 0.3
M ND_11 ND_21 0.92596
M ND_12 ND_22 0.8557
M ND_13 ND_23 1.00658
M ND_14 ND_24 0.90479
M ND_21 ND_31 0.94223
M ND_22 ND_32 0.89201
M ND_23 ND_33 1.00658
M ND_24 ND_34 0.9319
M ND_31 ND_41 1.04075
M ND_32 ND_41 1.09643
M ND_33 ND_41 1.00658
M ND_34 ND_41 1.04699
BL BLOCK_1 STAGE_2 0.4
M ND_11 ND_21 1.09407
M ND_12 ND_22 1.15979
M ND_13 ND_23 1.00658
M ND_14 ND_24 1.10405
M ND_21 ND_31 1.04984
M ND_22 ND_32 1.13555
M ND_23 ND_33 1.00658
M ND_24 ND_34 1.06147
M ND_31 ND_41 0.94542
M ND_32 ND_41 1.11137
M ND_33 ND_41 1.00658
M ND_34 ND_41 0.95535
BL BLOCK_1 STAGE_2 0.3
M ND_11 ND_21 1.02486
M ND_12 ND_22 0.98336
M ND_13 ND_23 1.00658
M ND_14 ND_24 1.04039
M ND_21 ND_31 1.05786
M ND_22 ND_32 1.05695
M ND_23 ND_33 1.00658
M ND_24 ND_34 1.05855
M ND_31 ND_41 1.13595
M ND_32 ND_41 1.11459
M ND_33 ND_41 1.00658
M ND_34 ND_41 1.13907

ENDATA

8. Mixing LP and network formats

The problem in this section was inspired by the work done by Wallace (1986). It concerns a hypothetical
fish-processing company with two processing plants and a fleet that can fish in five different locations.
The aim is to expand the capacity of both the fleet and the production facilities, subject to a joint budget
constraint, to send the fleet to the locations, to land the ensuing catch and finally to process the catch
into three products. The objective is to minimize net cost, which is subject to uncertainty on both the
supply side (availability of fish) and the demand side (price to customers).
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We will give the problem in three separate stages. The first stage concerns the capacity expansion
and original allocation of the fishing fleet. The mathematical formulation of this problem is

min
F∑

f =1

M∑
m=0

e f mx f m +
F∑

f =1

G∑
g=1

c f gu f g + Eξ1 R1(x, u, ξ1)

s.t.
F∑

f =1

m∑
m=0

e f mx f m � B,

− x f 0 +
G∑

g=1

u f g � i f 0, f = 1, . . . , F,

x f m, u f g � 0, f = 1, . . . , F, m = 0, . . . , M, g = 1, . . . , G,

where

F is the number of processing plants,
M is the number of resources considered (the resource numbered 0 represents the fishing fleet),
G is the number of fishing grounds,
B is the available budget,
i f m is the existing capacity of resource m in plant f ,
e f m is the cost of adding one unit of capacity of resource m in plant f ,
x f m is the capacity of resource m added in plant f ,
c f g is the cost of sending one unit of fishing capacity from plant f to fishing ground g,
u f g is the amount of fishing capacity sent from plant f to fishing ground g.

The quantity R1(x, u, ξ1) is the recourse cost. Once the fishing fleet is in location, the amount of
fish is revealed and the fishing fleet can be relocated from one ground to another. Mathematically, this
amounts to solving the following problem:

R1(x, u, ξ1) = min
N1∑

n=1

G∑
g=1

G∑
j=1

πntg j yg jn +
N1∑

n=1

G∑
g=1

F∑
f =1

πnrg f vg f n

+ Eξ2 R2(x, u, ξ1, y, v, w, ξ2)

s.t.
G∑

j=1

ygjn +
F∑

f =1

vg f n =
F∑

f =1

u f g, g = 1, . . . , G, n = 1, . . . , N1,

vg f n − wg f n � 0, g = 1, . . . , G, f = 1, . . . , F, n = 1, . . . , N1,

F∑
f =1

wg f n � sgn, g = 1, . . . , G, n = 1, . . . , N1,

ygjn unrestricted, vg f n, wg f n � 0,

where



SMPS FORMAT EXPLAINED 21 of 31

tg j is the cost of relocating one unit of fishing capacity from fishing ground g to fishing ground j ,
ygjn is the amount of fishing capacity relocated from fishing ground g to fishing ground j in

node n,
rg f is the cost of returning one unit of fishing capacity from fishing ground g to plant f ,
vg f n is the amount of fishing capacity returned from fishing ground g to plant f in node n,
wg f n is the amount of fish harvested from fishing ground g and returned to plant f in node n,
sgn is the amount of fish available at fishing ground g in node n,
πn is the probability that node n occurs.

The amount of resource transported from fishing ground g to ground j is unrestricted, in order to
allow for a more compact representation. If vg jn < 0, then shipping movement occurs from j to i .

The third stage of the problem concerns the processing of the fish. This can be expressed mathemat-
ically as

R2(x, u, ξ1, y, v, w, ξ2) = min

⎡
⎣−

N∑
n=N1+1

F∑
f =1

Q∑
q=1

πnh f qnz f qn

⎤
⎦

s.t.
Q∑

q=1

z f qn �
G∑

g=1

wg f a(n), f = 1, . . . , F, n = N1 + 1, . . . , N ,

Q∑
q=1

a f qmz f qn � i f m + x f m, f = 1, . . . , F, m = 1, . . . , M,

n = N1 + 1, . . . , N

z f qn � 0, f = 1, . . . , F, q = 1, . . . , Q, n = N1 + 1, . . . , N ,

where
Q is the number of different fish products that can be produced,
h f qn is the net profit obtained from one unit of product q produced at plant f in node n,
a f qm is the amount of resource m needed to produce one unit of product q at plant f ,
z f qn is the amount of product q produced at plant f in node n,
pn is the (path) probability of reaching node n,
a(n) is the predecessor node of node n in the event tree,
N = {0, . . . , N } is the set of nodes; 0 is the root node, {1, . . . , N1} are the second-stage nodes and

the remainder are third-stage nodes.

The SMPS files below combine all three problems into a single formulation. We will use an LP
formulation for the capacity expansion problem in stage 1 and the processing problem in stage 3, and a
network formulation for the fleet allocation and relocation problem in stage 2.

NAME MIXED_LP

* Start with ordinary LP section
ROWS
N TCOST
L BUDGET
L FLEETA
L FLEETB
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* network section
NODES
E LOC1
E LOC2
E LOC3
E LOC4
E LOC5

* back to LP
ROWS
L AVAIL1
L AVAIL2

...
COLUMNS

EXPA1 TCOST 5. BUDGET 5.0
EXPA1 PCAPA1 -1.
EXPA2 TCOST 5. BUDGET 5.0
EXPA2 PCAPA2 -1.
...

* network section with implicitly named decisions

* The keyword UNDIR indicates an undirected network with

* no capacity restrictions on the arcs; flow can be reversed
ARCS UNDIR

LOC1 LOC2 0.10
LOC1 LOC3 0.20
...

* back to LP
COLUMNS

HARV1A CAPA1 1. AVAIL1 1.0
HARV1A CATCHA -1.
...

RHS
RHS BUDGET 10000.
RHS FLEETA 500. FLEETB 300.
RHS AVAIL1 700. AVAIL2 500.
RHS AVAIL3 1000. AVAIL4 1200.
RHS AVAIL5 800.
RHS PCAPA1 1000. PCAPA2 1000.
RHS PCAPA3 0.
RHS PCAPB1 1500. PCAPB2 1000.
RHS PCAPB3 1000.

ENDATA

The problem has three distinct stages as defined in the time file:

TIME MIXED_LP
PERIODS

EXPA1 TCOST STAGE1
’NETWRK’ LOC1 STAGE2
PRODA1 CATCHA STAGE3

ENDATA
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The stoch file sets up four scenarios. There are two possible levels of fish stocks, and for each level
there are two possible sets of prices for the fish products.

STOCH MIXED_LP
SCENARIOS
SC SCEN_1 ’ROOT’ 0.3 STAGE1
SC SCEN_2 SCEN_1 0.4 STAGE2

RHS AVAIL1 900.
RHS AVAIL2 700.
RHS AVAIL3 1300.
RHS AVAIL4 1700.
RHS AVAIL5 1000.
PRODA1 TCOST -2.
PRODA2 TCOST -2.5
PRODA3 TCOST -0.1
PRODB1 TCOST -3.
PRODB2 TCOST -3.5
PRODB3 TCOST -0.8
PRODC1 TCOST -2.5
PRODC2 TCOST -3.5
PRODC3 TCOST -0.3

SC SCEN_3 SCEN_1 0.2 STAGE3
PRODA1 TCOST -4.
PRODA2 TCOST -5.5
PRODA3 TCOST -1.5
PRODB1 TCOST -5.
PRODB2 TCOST -6.
PRODB3 TCOST -1.8
PRODC1 TCOST -4.5
PRODC2 TCOST -6.5
PRODC3 TCOST -2.2

SC SCEN_4 SCEN_2 0.1 STAGE3
PRODA1 TCOST -3.
PRODA2 TCOST -4.5
PRODA3 TCOST -2.
PRODB1 TCOST -4.
PRODB2 TCOST -4.5
PRODB3 TCOST -1.1
PRODC1 TCOST -4.0
PRODC2 TCOST -5.5
PRODC3 TCOST -1.2

ENDATA

9. Simple recourse

Simple recourse problems feature a very special form of the recourse matrix. Deviations from a tar-
get value are penalized by a linear penalty. We illustrate the use of this feature with one of the first
stochastic linear programs ever formulated, an airline fleet allocation problem due to Dantzig (1963) and
Ferguson & Dantzig (1956). In this problem, a fleet of airplanes must be assigned to different routes so as
to minimize the operating costs. The demands along the routes are stochastic, and penalties are incurred
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for lost sales due to insufficient capacity:

min
∑
i∈I

∑
r∈R(i)

cir xir +
∑
s∈S

ps

[∑
r∈R

qrs yrs

]

s.t.
∑

r∈R(i)

xir � bi , i ∈ I,

∑
i∈I,r∈R(i)

tir xir + yrs − zrs = hrs, r ∈ R, s ∈ S,

xir � 0, i ∈ I, r ∈ R(i), yrs, wrs � 0, r ∈ R, s ∈ S,

where

I is the set of aircraft to be used,
R is the set of routes to be serviced,
R(i) is the set of routes within R that can be serviced by aircraft of type i ,
bi is the number of aircraft available of type i ,
cir is the cost of operating an aircraft of type i along route r ,
tir is the passenger capacity of aircraft i on route r ,
hrs is the passenger demand on route r under scenario s,
qrs is the revenue lost per passenger turned away on route r under scenario s,
xir is the number of aircraft of type i assigned to route r ,
yrs is the number of passengers turned away on route r under scenario s,
zrs is the number of empty seats on route r under scenario s.

NAME AIRLINE
ROWS
N COST
L AVAIL_A
L AVAIL_B
L AVAIL_C
L AVAIL_D
G DEMAND1
G DEMAND2
G DEMAND3
G DEMAND4
G DEMAND5

COLUMNS
ALLOC1A AVAIL_A 1.0 DEMAND1 16.0
ALLOC1A COST 18.0
ALLOC1D AVAIL_D 1.0 DEMAND1 9.0
ALLOC1D COST 17.0

*
ALLOC2A AVAIL_A 1.0 DEMAND2 15.0
...

RHS
RHS1 AVAIL_A 10.0 AVAIL_B 19.0
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RHS1 AVAIL_C 25.0 AVAIL_D 15.0
RHS1 DEMAND1 250.0 DEMAND2 120.0
RHS1 DEMAND3 180.0 DEMAND4 90.0
RHS1 DEMAND5 600.0

ENDATA

Since the second-stage recourse variables have not been set up in the core file, the time file must
take on a special form. The marker ‘PENLTY’ alerts the system to what is happening.

TIME AIRLINE
PERIODS

ALLOC1A COST STAGE1
’PENLTY’ DEMAND1 STAGE2

ENDATA

The stoch file has two sections. The first section gives the penalty parameters for violating the
demand constraints, while the second section sets up discrete distributions (independently of each other)
for the demands along the different routes.

STOCH AIRLINE
SIMPLE

RHS1 DEMAND1 13.0
RHS1 DEMAND2 13.0
RHS1 DEMAND3 7.0
RHS1 DEMAND4 7.0
RHS1 DEMAND5 1.0

INDEP DISCRETE
RHS1 DEMAND1 200.0 0.20
RHS1 DEMAND1 220.0 0.05
RHS1 DEMAND1 250.0 0.35
RHS1 DEMAND1 270.0 0.2
RHS1 DEMAND1 300.0 0.2
...

ENDATA

SMPS supports other forms of penalties as well, namely, purely quadratic penalties and a form of
piecewise linear-quadratic penalties popularized by King (1988a). The format is very similar to the
linear penalties; hence, an example is omitted for reasons of space.

10. Chance-constrained problem

This problem was taken from King (1988b) who attributes it to Prékopa & Szántai (1978). It represents
a water management problem, whereby a number of reservoirs must be designed in order to control
flooding due to random stream inflows.

As shown in Fig. 5, five dams are to be built to deal with random inflows in five locations. Flow in
this system is from north to south. The objective is to protect against floods in location 10 with prob-
ability 0.9. This somewhat complicated mathematical condition can be reformulated into an equivalent
system of inequalities, which turns the problem into a chance constraint problem with a single joint
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FIG. 5. A river system with dams for flood control.

chance constraint. Its mathematical formulation is given below:

min
∑
j∈J

c j x j

s.t. 0 � x j � u j , j ∈ J,

Pr

⎡
⎣∑

j∈J

tk j x j �
∑
i∈I

skiξi , k ∈ K

⎤
⎦ � p,

where
I is a set of inflows into the system,
J is a set of reservoirs,
x j is the capacity of reservoir j ,
u j is an upper bound on the capacity of reservoir j ,
c j is the cost per unit capacity of reservoir j ,
ξi is the random inflow from source i ,
K is the number of simple constraints used to represent the no-flood condition,
T = [tk j ] and S = [ski ] are incidence matrices for the no-flood condition,
p is the desired level of confidence that the river system will not be flooded.
The core file for this problem has the following form.
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NAME WATERMGT
ROWS
N COST
G FLOW1
G FLOW2
G FLOW3
G FLOW4
G FLOW5
G FLOW6
G FLOW7
G FLOW8
G FLOW9

COLUMNS
CAP1 COST 0.4
CAP1 FLOW3 1.0 FLOW6 1.0
CAP1 FLOW7 1.0 FLOW9 1.0

*
CAP2 COST 0.5
CAP2 FLOW4 1.0 FLOW6 1.0
CAP2 FLOW8 1.0 FLOW9 1.0

*
CAP3 COST 0.6
CAP3 FLOW5 1.0 FLOW7 1.0
CAP3 FLOW8 1.0 FLOW9 1.0

*
CAP4 COST 1.2
CAP4 FLOW2 1.0 FLOW3 1.0
CAP4 FLOW4 1.0 FLOW5 1.0
CAP4 FLOW6 1.0 FLOW7 1.0
CAP4 FLOW8 1.0 FLOW9 1.0

*
CAP5 COST 1.8
CAP5 FLOW1 1.0 FLOW2 1.0
CAP5 FLOW3 1.0 FLOW4 1.0
CAP5 FLOW5 1.0 FLOW6 1.0
CAP5 FLOW7 1.0 FLOW8 1.0
CAP5 FLOW9 1.0

RHS
RHS FLOW1 1.0 FLOW2 1.0
RHS FLOW3 1.0 FLOW4 1.0
RHS FLOW5 1.0 FLOW6 1.0
RHS FLOW7 1.0 FLOW8 1.0
RHS FLOW9 1.0

BOUNDS
UP BOUND CAP1 1.0
UP BOUND CAP2 1.0
UP BOUND CAP3 1.0
UP BOUND CAP4 2.0
UP BOUND CAP5 3.0

ENDATA
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This problem has a single period only, but the time file needs to be present in order to process the
distribution information in the stoch file.

TIME WATERMGT
PERIODS

COST CAP1 PERIOD1
ENDATA

The stoch file has three sections. The DISTRIB section sets up the multivariate normal random
variable ξ and then links it to the random right-hand sides of the problem using the linear transformation
r = Dξ . The matrix D is defined in the BLOCKS section in column order. Finally, a multidimensional
(joint) probabilistic constraint is set up in the CHANCE section.

STOCH WATERMGT
DISTRIB MVNORMAL
BL BL

* mean variance
XI_1 0.8 0.04
XI_2 1.5 0.09
XI_3 1.2 0.36
XI_4 0.5 0.16
XI_5 0.7 0.09

*
* Correlation matrix
CR

XI_1 XI_2 0.0
XI_1 XI_3 0.6
XI_1 XI_4 0.4
XI_1 XI_5 0.0
XI_2 XI_3 0.5
XI_2 XI_4 0.3
XI_2 XI_5 0.3
XI_3 XI_4 0.7
XI_3 XI_5 0.6
XI_4 XI_5 0.4

BLOCKS LINTR
RHS FLOW1 0.0
RHS FLOW2 0.0
RHS FLOW3 0.0
RHS FLOW4 0.0
RHS FLOW5 0.0
RHS FLOW6 0.0
RHS FLOW7 0.0
RHS FLOW8 0.0
RHS FLOW9 0.0

RV XI_1
RHS FLOW3 1.0
RHS FLOW6 1.0
RHS FLOW7 1.0
RHS FLOW9 1.0
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RV XI_2
RHS FLOW4 1.0
RHS FLOW6 1.0
RHS FLOW8 1.0
RHS FLOW9 1.0

RV XI_3
RHS FLOW5 1.0
RHS FLOW7 1.0
RHS FLOW8 1.0
RHS FLOW9 1.0

RV XI_4
RHS FLOW2 1.0
RHS FLOW3 1.0
RHS FLOW4 1.0
RHS FLOW5 1.0
RHS FLOW6 1.0
RHS FLOW7 1.0
RHS FLOW8 1.0
RHS FLOW9 1.0

RV XI_5
RHS FLOW1 1.0
RHS FLOW2 1.0
RHS FLOW3 1.0
RHS FLOW4 1.0
RHS FLOW5 1.0
RHS FLOW6 1.0
RHS FLOW7 1.0
RHS FLOW8 1.0
RHS FLOW9 1.0

CHANCE
JG CHANCE1 CC1 0.9

FLOW1
FLOW2
FLOW3
FLOW4
FLOW5
FLOW6
FLOW7
FLOW8
FLOW9

ENDATA

Integrated chance constraints introduced by Haneveld (1986) and used in the finance community as
a measure of risk (see, e.g. Uryasev & Rockafellar, 2001) can be handled in SMPS in a similar manner.
Once again we omit the example for space reasons.

11. Concluding remarks

While the examples in this paper have by necessity been abbreviated and kept artificially small, the
variety of models and approaches nonetheless served to illustrate the flexibility of the SMPS format.
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By making available the algebraic formulation, MPL model files (Kristjánsson, 2002) and the full col-
lection of SMPS files for easy download over the internet, we hope to stimulate some interest in the
SMPS format and thereby encourage its greater use.
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